Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrafluoro-N-phenylphthalimide

Fan Wen, Ren-Jie Ni and Cheng Yao*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: yaocheng@njut.edu.cn

Received 3 June 2007; accepted 4 June 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.090; data-to-parameter ratio = 7.3.

In the molecule of the title compound, $C_{14}H_5F_4NO_2$, the dihedral angles between the planar rings *A* (phenyl), *B* (five-membered) and *C* (fused benzene) are A/B = 50.13 (3)°, A/C = 48.34 (3)° and B/C = 3.80 (2)°.

Related literature

For general background, see: Cai *et al.* (2006). For bond-length data, see: Allen *et al.* (1987). For related literature, see: Nowak & Lin (1991).

Experimental

Crystal data $C_{14}H_5F_4NO_2$ $M_r = 295.19$

Orthorhombic, $P2_12_12_1$ a = 7.0960 (14) Å b = 8.4060 (17) Å c = 20.068 (4) Å $V = 1197.0 (4) \text{ Å}^3$ Z = 4

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.955, T_{\max} = 0.985$ 2348 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 190 parameters $wR(F^2) = 0.090$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.15$ e Å $^{-3}$ 1388 reflections $\Delta \rho_{min} = -0.16$ e Å $^{-3}$

Data collection: *CAD-4 Software* (Enraf–Nonius, 1985); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank Dr Shan Liu and the Centre of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2269).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Cai, X. W., Feng, Y. Q., Qi, X. & Zhang, C. Y. (2006). Chem. Ind. Eng. 23, 320–322.

Enraf–Nonius (1985). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Nowak, D. M. & Lin, H. C. (1991). US Patent No. 5 047 553.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Mo $K\alpha$ radiation $\mu = 0.15 \text{ mm}^{-1}$

 $0.30 \times 0.30 \times 0.10$ mm

3 standard reflections

frequency: 120 min

intensity decay: none

1388 independent reflections

1079 reflections with $I > 2\sigma(I)$

T = 298 (2) K

 $R_{\rm int} = 0.032$

supplementary materials

Acta Cryst. (2007). E63, o3153 [doi:10.1107/S1600536807027286]

Tetrafluoro-N-phenylphthalimide

F. Wen, R.-J. Ni and C. Yao

Comment

The title compound, (I), can be utilized to synthsize 2,3,4,5-tetrafluoro- benzoic acid, it is an important intermediate of fluoroquinolone antibiotics (Cai *et al.*, 2006). We report herein the crystal structure of the title compound, (I).

In the molecule of the title compound, (I), (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The dihedral angles between the planar rings A (C1—C6), B (N/C7—C10) and C (C9—C14) are A/B = 50.13 (3)°, A/C = 48.34 (3)° and B/C = 3.80 (2)°.

Experimental

The title compound, (I), was prepared by adding tetrachloro-*N*-phenylphthalimide (100 g, 0.28 mol) to 413 g sulfolane solution of KF (193 g, 3.3 mol) at 433 K (Nowak & Lin, 1991). After stirring for 3 h, the mixture was filtered hot, the product was separated from the sulfolane by the addition of cold water (1900 ml). The yellow solid, was recrystallized by the addition of acetic acid. Then, the crystals of compound (I) were obtained by evaporating the solvent ethyl acetate slowly at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$,

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Tetrafluoro-N-phenylphthalimide

Crystal data $C_{14}H_5F_4NO_2$ $M_r = 295.19$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.0960 (14) Å

 $F_{000} = 592$ $D_x = 1.638 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-13^\circ$

b = 8.4060 (17) Å	$\mu = 0.15 \text{ mm}^{-1}$
c = 20.068 (4) Å	T = 298 (2) K
$V = 1197.0 (4) \text{ Å}^3$	Block, colorless
Z = 4	$0.30\times0.30\times0.10~mm$
Data collection	

Enraf–Nonius CAD-4 diffractometer	$R_{\text{int}} = 0.032$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.0^{\circ}$
T = 298(2) K	$h = -8 \rightarrow 8$
$\omega/2\theta$ scans	$k = 0 \rightarrow 10$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 24$
$T_{\min} = 0.955, T_{\max} = 0.985$	3 standard reflections
2348 measured reflections	every 120 min
1388 independent reflections	intensity decay: none
1079 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.05P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.035$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.090$	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.03	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
1388 reflections	Extinction correction: none
190 parameters	
Primary atom site location: structure-invariant direct methods	

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.7900 (3)	1.1852 (2)	-0.18876 (8)	0.0824 (6)
F2	0.4777 (3)	1.2338 (2)	-0.11603 (10)	0.0814 (7)
F3	0.4567 (2)	1.1333 (2)	0.01142 (9)	0.0673 (5)
F4	1.0865 (3)	1.0230 (2)	-0.13876 (8)	0.0734 (6)
O1	1.2119 (3)	0.8510(2)	-0.01010 (9)	0.0576 (5)
O2	0.6970 (3)	0.9697 (3)	0.11857 (9)	0.0606 (5)
Ν	0.9795 (3)	0.8960 (3)	0.06903 (10)	0.0454 (5)
C1	1.0590 (6)	0.6500 (4)	0.21979 (15)	0.0730 (10)
H1A	0.9942	0.5770	0.2460	0.088*
C2	0.9740 (5)	0.7132 (4)	0.16367 (15)	0.0605 (8)
H2A	0.8535	0.6809	0.1514	0.073*
C3	1.0692 (4)	0.8240 (3)	0.12618 (12)	0.0470 (6)
C4	1.2493 (4)	0.8701 (4)	0.14324 (14)	0.0566 (8)
H4A	1.3134	0.9445	0.1175	0.068*
C5	1.3328 (5)	0.8057 (4)	0.19844 (14)	0.0682 (9)
H5A	1.4542	0.8366	0.2102	0.082*
C6	1.2381 (6)	0.6949 (5)	0.23682 (15)	0.0754 (10)
H6A	1.2959	0.6509	0.2741	0.090*
C7	0.7977 (4)	0.9623 (3)	0.07029 (13)	0.0478 (6)
C8	1.0603 (4)	0.9040 (3)	0.00558 (13)	0.0461 (6)
C9	0.9221 (4)	0.9915 (3)	-0.03620 (13)	0.0450 (6)
C10	0.7641 (4)	1.0220 (3)	0.00212 (12)	0.0457 (6)
C11	0.6128 (4)	1.1016 (3)	-0.02440 (15)	0.0511 (7)
C12	0.6241 (4)	1.1549 (3)	-0.08918 (15)	0.0574 (8)
C13	0.7831 (5)	1.1282 (4)	-0.12682 (14)	0.0582 (8)
C14	0.9322 (4)	1.0455 (3)	-0.10040 (14)	0.0536 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0990 (15)	0.0909 (13)	0.0573 (10)	0.0218 (13)	-0.0001 (11)	0.0167 (10)
0.0773 (14)	0.0777 (12)	0.0893 (14)	0.0330 (12)	-0.0168 (11)	0.0018 (11)
0.0498 (9)	0.0643 (11)	0.0878 (12)	0.0148 (9)	0.0115 (9)	-0.0076 (9)
0.0708 (11)	0.0915 (13)	0.0578 (9)	0.0197 (12)	0.0179 (9)	0.0110 (9)
0.0524 (11)	0.0644 (12)	0.0560 (11)	0.0151 (11)	0.0074 (10)	-0.0006 (10)
0.0502 (11)	0.0740 (14)	0.0576 (11)	-0.0024 (12)	0.0118 (10)	-0.0086 (10)
0.0443 (12)	0.0505 (12)	0.0413 (10)	-0.0034 (11)	0.0016 (10)	-0.0022 (10)
0.088 (3)	0.075 (2)	0.0565 (18)	-0.005 (2)	0.0140 (17)	0.0132 (16)
0.0644 (19)	0.0591 (17)	0.0579 (16)	-0.0104 (17)	0.0043 (16)	0.0007 (15)
0.0492 (15)	0.0501 (15)	0.0415 (13)	-0.0017 (14)	0.0028 (12)	-0.0029 (12)
0.0528 (17)	0.068 (2)	0.0487 (15)	-0.0076 (16)	0.0000 (13)	0.0009 (14)
0.0546 (18)	0.097 (2)	0.0527 (16)	-0.0034 (19)	-0.0084 (15)	0.0002 (18)
0.083 (2)	0.095 (3)	0.0487 (16)	0.013 (2)	0.0006 (17)	0.0082 (18)
0.0450 (14)	0.0479 (15)	0.0507 (14)	-0.0069 (14)	0.0029 (13)	-0.0112 (12)
	U^{11} 0.0990 (15) 0.0773 (14) 0.0498 (9) 0.0708 (11) 0.0524 (11) 0.0502 (11) 0.0443 (12) 0.088 (3) 0.0644 (19) 0.0492 (15) 0.0528 (17) 0.0546 (18) 0.083 (2) 0.0450 (14)	U^{11} U^{22} $0.0990 (15)$ $0.0909 (13)$ $0.0773 (14)$ $0.0777 (12)$ $0.0498 (9)$ $0.0643 (11)$ $0.0708 (11)$ $0.0915 (13)$ $0.0524 (11)$ $0.0644 (12)$ $0.0502 (11)$ $0.0740 (14)$ $0.0443 (12)$ $0.0505 (12)$ $0.088 (3)$ $0.075 (2)$ $0.0644 (19)$ $0.0591 (17)$ $0.0492 (15)$ $0.0501 (15)$ $0.0528 (17)$ $0.068 (2)$ $0.0546 (18)$ $0.097 (2)$ $0.083 (2)$ $0.0479 (15)$	U^{11} U^{22} U^{33} $0.0990 (15)$ $0.0909 (13)$ $0.0573 (10)$ $0.0773 (14)$ $0.0777 (12)$ $0.0893 (14)$ $0.0498 (9)$ $0.0643 (11)$ $0.0878 (12)$ $0.0708 (11)$ $0.0915 (13)$ $0.0578 (9)$ $0.0524 (11)$ $0.0644 (12)$ $0.0560 (11)$ $0.0502 (11)$ $0.0740 (14)$ $0.0576 (11)$ $0.0443 (12)$ $0.0505 (12)$ $0.0413 (10)$ $0.088 (3)$ $0.075 (2)$ $0.0565 (18)$ $0.0644 (19)$ $0.0591 (17)$ $0.0579 (16)$ $0.0492 (15)$ $0.0501 (15)$ $0.0415 (13)$ $0.0528 (17)$ $0.068 (2)$ $0.0487 (15)$ $0.0546 (18)$ $0.097 (2)$ $0.0527 (16)$ $0.083 (2)$ $0.095 (3)$ $0.0487 (16)$ $0.0450 (14)$ $0.0479 (15)$ $0.0507 (14)$	U^{11} U^{22} U^{33} U^{12} 0.0990 (15)0.0909 (13)0.0573 (10)0.0218 (13)0.0773 (14)0.0777 (12)0.0893 (14)0.0330 (12)0.0498 (9)0.0643 (11)0.0878 (12)0.0148 (9)0.0708 (11)0.0915 (13)0.0578 (9)0.0197 (12)0.0524 (11)0.0644 (12)0.0560 (11)0.0151 (11)0.0502 (11)0.0740 (14)0.0576 (11) $-0.0024 (12)$ 0.0443 (12)0.0505 (12)0.0413 (10) $-0.0034 (11)$ 0.088 (3)0.075 (2)0.0565 (18) $-0.005 (2)$ 0.0644 (19)0.0591 (17)0.0579 (16) $-0.0104 (17)$ 0.0528 (17)0.068 (2)0.0487 (15) $-0.0076 (16)$ 0.0546 (18)0.097 (2)0.0527 (16) $-0.0034 (19)$ 0.083 (2)0.095 (3)0.0487 (16)0.013 (2)0.0450 (14)0.0479 (15) $0.0507 (14)$ $-0.0069 (14)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0990 (15)0.0909 (13)0.0573 (10)0.0218 (13) $-0.0001 (11)$ 0.0773 (14)0.0777 (12)0.0893 (14)0.0330 (12) $-0.0168 (11)$ 0.0498 (9)0.0643 (11)0.0878 (12)0.0148 (9)0.0115 (9)0.0708 (11)0.0915 (13)0.0578 (9)0.0197 (12)0.0179 (9)0.0524 (11)0.0644 (12)0.0560 (11)0.0151 (11)0.0074 (10)0.0502 (11)0.0740 (14)0.0576 (11) $-0.0024 (12)$ 0.0118 (10)0.0443 (12)0.0505 (12)0.0413 (10) $-0.0034 (11)$ 0.0016 (10)0.088 (3)0.075 (2)0.0565 (18) $-0.005 (2)$ 0.0140 (17)0.0644 (19)0.0591 (17)0.0579 (16) $-0.0104 (17)$ 0.0028 (12)0.0528 (17)0.068 (2)0.0487 (15) $-0.0076 (16)$ 0.0000 (13)0.0546 (18)0.097 (2)0.0527 (16) $-0.0034 (19)$ $-0.0084 (15)$ 0.083 (2)0.095 (3)0.0487 (16)0.013 (2)0.0006 (17)0.0450 (14)0.0479 (15)0.0507 (14) $-0.0069 (14)$ 0.0029 (13)

supplementary materials

C%	0.0462(14)	0.0445(14)	0.0477(14)	0.0009 (12)	0.0026(12)	-0.0060(12)
	0.0402(14)	0.0443(14)	0.0477(14)	0.0008(13)	0.0030(13)	-0.0009(12)
C9	0.0450(14)	0.0401(13)	0.0498(14)	0.0021(12)	0.0018(12)	-0.0047(11)
C10	0.0468(14)	0.0370(13)	0.0525(14)	-0.0007(12)	0.0042(12)	-0.0081(12)
	0.0446 (14)	0.0431(14)	0.0656(17)	0.0031 (14)	0.003/(14)	-0.0120(13)
C12	0.0617(18)	0.0432 (16)	0.06/2(18)	0.0119 (15)	-0.0094 (15)	-0.0059 (14)
C13	0.070 (2)	0.0550 (17)	0.0494 (14)	0.0080 (17)	0.0001 (15)	-0.0001 (14)
C14	0.0577(17)	0.0534 (16)	0.0497 (14)	0.0091 (15)	0.0065 (14)	-0.0033 (13)
Geometric param	neters (Å, °)					
F1—C13		1.333 (3)	С3—С	4	1.379	(4)
F2—C12		1.345 (3)	C4—C	5	1.368	(4)
F3—C11		1.347 (3)	С4—Н	4A	0.930	0
F4—C14		1.352 (3)	C5—C	6	1.383	(5)
O1—C8		1.206 (3)	С5—Н	5A	0.930	0
O2—C7		1.206 (3)	С6—Н	6A	0.930	0
N—C8		1.398 (3)	С7—С	10	1.477	(4)
N—C7		1.405 (4)	C8—C	9	1.485	(4)
N—C3		1.445 (3)	С9—С	14	1.368	(4)
C1—C6		1.369 (5)	С9—С	10	1.384	(3)
C1—C2		1.383 (5)	C10—	C11	1.373	(4)
C1—H1A		0.9300	C11—	C12	1.377	(4)
C2—C3		1.375 (4)	C12—	C13	1.376	(4)
C2—H2A		0.9300	C13—	C14	1.373	(4)
C8—N—C7		112.0 (2)	N—C7	—C10	105.5	(2)
C8—N—C3		124.2 (2)	01—0	8—N	125.9	(3)
C7—N—C3		123.8 (2)	01—0	8—C9	128.6	(3)
C6—C1—C2		120.1 (3)	N—C8	—С9	105.5	(2)
C6—C1—H1A		119.9	C14—	C9—C10	120.3	(3)
C2—C1—H1A		119.9	C14—	С9—С8	131.4	(3)
C3—C2—C1		119.4 (3)	C10—	С9—С8	108.2	(2)
С3—С2—Н2А		120.3	C11—	С10—С9	120.6	(2)
C1—C2—H2A		120.3	C11—	С10—С7	130.6	(2)
C2—C3—C4		120.7 (3)	С9—С	10—C7	108.7	(2)
C2—C3—N		120.1 (3)	F3—C	11—C10	122.2	(3)
C4—C3—N		119.2 (3)	F3—C	11—C12	119.2	(3)
C5—C4—C3		119.4 (3)	C10—	C11—C12	118.6	(3)
С5—С4—Н4А		120.3	F2—C	12—C13	119.6	(3)
С3—С4—Н4А		120.3	F2—C	12—C11	119.6	(3)
C4—C5—C6		120.5 (3)	C13—	C12—C11	120.9	(3)
C4—C5—H5A		119.8	F1—C	13—C14	120.9	(3)
С6—С5—Н5А		119.8	F1—C	13—C12	118.9	(3)
C1—C6—C5		119.9 (3)	C14—	C13—C12	120.2	(3)
С1—С6—Н6А		120.1	F4—C	14—С9	122.2	(3)
С5—С6—Н6А		120.1	F4—C	14—C13	118.4	(2)
O2—C7—N		125.4 (3)	С9—С	14—C13	119.4	(3)
O2—C7—C10		129.1 (3)				
C6—C1—C2—C3	3	-1.6 (5)	C14—	С9—С10—С7	-175.	3 (2)
C1—C2—C3—C4	4	1.3 (4)	C8—C	9—C10—C7	2.5 (3)

C1—C2—C3—N	-177.4 (3)	O2—C7—C10—C11	0.5 (5)
C8—N—C3—C2	-129.0 (3)	N-C7-C10-C11	-177.8 (3)
C7—N—C3—C2	49.0 (4)	O2—C7—C10—C9	177.9 (3)
C8—N—C3—C4	52.3 (4)	N—C7—C10—C9	-0.4 (3)
C7—N—C3—C4	-129.7 (3)	C9-C10-C11-F3	180.0 (2)
C2—C3—C4—C5	-0.6 (4)	C7—C10—C11—F3	-2.9 (5)
N—C3—C4—C5	178.1 (3)	C9-C10-C11-C12	-2.1 (4)
C3—C4—C5—C6	0.2 (5)	C7-C10-C11-C12	175.1 (3)
C2—C1—C6—C5	1.2 (6)	F3—C11—C12—F2	-1.7 (4)
C4—C5—C6—C1	-0.5 (5)	C10-C11-C12-F2	-179.7 (3)
C8—N—C7—O2	179.6 (3)	F3—C11—C12—C13	178.4 (3)
C3—N—C7—O2	1.4 (4)	C10-C11-C12-C13	0.4 (4)
C8—N—C7—C10	-2.1 (3)	F2-C12-C13-F1	1.8 (4)
C3—N—C7—C10	179.7 (2)	C11—C12—C13—F1	-178.4 (3)
C7—N—C8—O1	-177.2 (3)	F2-C12-C13-C14	-178.9 (3)
C3—N—C8—O1	1.0 (5)	C11-C12-C13-C14	1.0 (5)
C7—N—C8—C9	3.5 (3)	C10-C9-C14-F4	177.7 (3)
C3—N—C8—C9	-178.3 (2)	C8—C9—C14—F4	0.5 (5)
O1—C8—C9—C14	-5.5 (5)	C10-C9-C14-C13	-1.0 (4)
N-C8-C9-C14	173.8 (3)	C8—C9—C14—C13	-178.2 (3)
O1—C8—C9—C10	177.0 (3)	F1-C13-C14-F4	-0.1 (5)
N-C8-C9-C10	-3.7 (3)	C12-C13-C14-F4	-179.4 (3)
C14—C9—C10—C11	2.4 (4)	F1-C13-C14-C9	178.6 (3)
C8—C9—C10—C11	-179.8 (2)	C12-C13-C14-C9	-0.7 (5)

